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Abstract 

The problem of describing macroscopic variables in quantum theory, is discussed. It is 
suggested that the 'eigenspaces' of macroscopic variables be hyperspheres rather than 
closed linear subspaces. This is combined with the usual suggestion that macroscopic 
vaxiables are nearly diagonal in the energy representation. The Schr6dinger paradox is 
resolved in terms of this discussion. 

1. Introduction 

What is said in this paper to some extent hinges on an axiom system for 
Q.M. which has been presented elsewhere (Krips, 1974). To the extent that we 
only appeal to the non-controversial theorems of that system, however, our 
views on m-variables (macro-variables) can be explained without rehearsing the 
arguments in Krips (1974). We shall now give a short summary of the relevant 
results from the above which will be assumed here. 

With any vector ff and variable A is associated a set of probabilities P[A, ai; 
t ) ] -which  turns out to be the probability that A is measured to have the value 
ai i r a  is measured in S at t under the conditions that S at t has the pure state 
ft. All vectors are assumed to have unit  norm, so that P[ff], the projector into 

is [ ff ) ( ff [. Also associated with system S at time t is a set of vectors and 
associated weights {p~, ~ } ,  Pc~ 2> 0, 2; Pc~ = 1, so that there is probability p~ 
that S at t is in ff,~ out of the set (ffc~}- Finally we associate with S at t a set of 
probabilities {P [A, ai; S, t] } defined by: 

(i) P[A, ai; S, t] = Y~p~P[A, ai; t)a]. 
P[A, ai; S, t] turns out  to be the probability that A is measured to have 

value a i in S at t i fA is measured in S at t. I f S  at t is associated with {p~, ~} 
then we define W(S, t), the density operator for S at t, as 2; pc~P[ff~]. We 
have the theorems/axioms: 
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(ii) If  W(S, t) = E p~P[ffe] where eachpa > 0 and {P[~a] } are linearly 
independent, then there is probability p~ that S at t is in ~ ,  for each o~, out of 
the set ( ~ } . t  

We introduce a set of vectors {~id} associated with A, where each ~ia is a 
vector of A for value ai. We define:~ the space of vectors spanned by {~ia}i to 
be the ai-eigenspace of A. We have that 

(iii) I fS  at t is associated with {Pi, ~i), where ~i is in the ai-eigenspace of 
A, for each i, thenA has the value a i in S at t if and only i fS at t is in ~i out of  
the set {~i}. 

(iv) W(S, t) = TrMW(S + M, t). 
(v) P[A, ai; ~1 = Ea I(~ia, ~)12. 
From (v) it is easily shown that the 'exceptation value' of  A in S at t -which 

is defined as E P[A, i," S, t]ai-isjust Tr W(S, t)A, where A = E aiP[Oia]. 
A distinction emphasised in Krips (1974), is that to say S at t is in the pure 

state ff is to say that S at t is associated with {1, ~} or that W(S, t) = P[ff], 
which is much stronger than just saying that S at t is in ~ (or has state-vector 
if), because the latter is consistent with W(S, t) taking any form E P~P[~a] 
where at least one of the {~a} is ft. Finally we note that the one numbering 
sequence will be used through all sections-except that within each proof a 
separate sequence is started. 

The suggestions we shall make in this paper are rather tentative ones, to the 
extent that the whole question of the nature of macroscopic variables is a 
rather open one. The way to answer this question is to identify macroscopic 
variables with those quantum theoretical constructs which satisfy classical 
equations, to some approximation, and under expected circumstances. (This 
program is essentially the one put forward by van Kampen (1962) and by 
Ludwig (1954)). For example, Ehrenfest's theorem (Schiff, 1955, p. 25) 
suggests that the macroscopic position of a particle be identified as the expec- 
tation value of the particle's (quantum theoretical) position. We also require 
that if a particle has a definite macroscopic position then there is small prob- 
ability associated with any other (quantum theoretical) positions. § And 
finally, we require that no position be available to a particle, from a macro- 
scopic point of view, which is not available to it from a quantum theoretical 
point of view. 

Therefore, we arrive at the conclusion: 
(vi) If S at t is in the pure state ~ then the macroscopic variable A has 

value Y if and only if 

]" The reason for restricting {P[~c~]} to be linearly independent  is that ,  if they are not,  
then the density operator may be decomposed into various sums of  the {P[#a]}  each 
with different coeff ic ients - thus  giving a non-unique probability. This restriction, in any 
case, is much weaker than the usually accepted restriction to orthogonal {qJa}- I note also 
the rule that the  events that S at t is in ~ a  and On' respectively, out o f  the set {~Pa}, are 
nmtualIy exclusive. 

$ We use the abbreviation here that '{Xc~j3}c~' abbreviates the set of  all Xc~g for given a 
and varying ~. 

§ Van Kampen uses the different condit ion that the expectat ion value o f  the dispersion 
of position is small. Under suitable assumptions those two conditions are equivalent. 
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(a) the corresponding quantum theoretical variable A has expectation value 
approximately equal to ~, i.e. 

[(2P[A, ai;~])ai-~t<<-6, for6 small 

(b) ~is one of the values {ai} of A; 
(c) if ~ = ai, then 

P[A, ai'; 4] <<.6, forb small 
i '  

i ' ~ i  

A second example of macroscopic variables arises in quantum statistical 
thermostatics. A system's temperature is a function of the mean of its internal 
energy; but it is only defined when the system is in equilibrium. It is well 
known, however, that for an equilibri.um system, with a given average energy 
and number of  components, the internal energy dispersion is small (Huang, 
1963, pp. 159, 189). This in turn suggests that for the temperature variable, 
(a), (b) and (c) are satisfied. 

The statement (vi) does imply that there is an intrinsic vagueness in the 
concept of a macroscopic variable-to the extent that tire number 6 is only 
defined as being 'small'. This is not a disadvantage however, because the dif- 
ference between micro and macro is only supposed to be one of degree. Later, 
an upper bound on 6 will be suggested. 

The macroscopic variables may be formally introduced as follows: 

Definition 1'. If  4 '  and ~ are vectors in H, then 4 '  ~ ~ to order ~ if and 
only if I Tr P[~ - ff']l ~< ~ where 5 ~ 0. 

Axiom I'. In any system S in which the m-variable 7t exists it is associated 
with the (ordinary quantum theoretical) variable A, and with a set {Ci} of 
clusters of vectors in H, the Hilbert space orS. The vectors in cluster Ci are 
called 'the vectors of.d for value ai'. 4 is in 6"/if and only i f ~  ~ 4 '  to order 
for some 4 '  in the ai-eigenspace of A in H, where g is small and positive. 

Comment. The significance of the Ci associated with.4 will be given later 
by Axiom II', which implies that i fS  at t is in the pure state t), 4 in Ci, then 
A has value ai. 

The use of the strong norm in Definition 1', is necessary for later theorems 
(cf. Theorem 3'). Note that l Tr P[4 - 4 ' ]  1< 5 has the geometrical interpret- 
ation that the tip of 4 '  is located within a hypersphere of radius/5, and with 
the tip of t~ as centre. Thus the cluster Ci of vectors is not a closed linear 
manifold-rather it is a union of hyperspheres of vectors centred on the vectors 
in the ai-eigenspace of A. Therefore we picture the m-variable A associated with 
A, as having the same values as A, and having a hypersphere of vectors around 
each eigenvector of  A, of radius 6. 



14 H. KRIPS 

Theorem 1'. I f  {~}  is any complete orthonormat set and tp ~ ~k~ to order 6, 
for some i, then 

>2 l<~V~,,,>12 <~ and l<q~, qJ>12 ~ 1 
i' 

i '# i  

to order 6 

Proof. 

Tr PI* - , ; ] :  
1 

i' 

=2 
i' 

I(~ , ,  ~ -  ~>12 

= ~1<~,, ~>-  5eel 2 
i' 

Hence, by Definition 1 ', Theorem t ' follows. 

Comment. It then follows that I '  is a formalisation of  (vi), since if ~ is in 
Ci, then from the comment  to I '  and Theorem 1 ', we immediately get the 
conditions (a), (b) and (c). 

tn introducing m-variables, like A, into the axiom scheme we have not yet 
introduced a probability P[A, ai; S, t]; we shall now discuss this. 

As mentioned above, P[.4, ai; S, t] plays the role of  the probability of  
measuring the variable A to have value a i. In our view, however, no such quan- 
tity exists for m-variables-and hence there is no place for a P[A, ai; S, t]. This 
claim appears startl ing-surely we do measure m-variables? Our answer to this is 
' N o ' - w e  suggest that when we appear to be measuring the m-variable _d, we are 
in fact measuring A, and when we appear to refer to a probability of  measuring 

to have value ai, we are in fact referring to the probability of  measuringA 
to have value ai-at least to within an approximation. Furthermore,  we wish to 
suggest that we do not  even determine P[A, ai; S, t] as an estimate of  P[A, ai; 
& t ] - a t  best we determine a time-averaged value ofP[A, ai; S, t], averaged 
over the error in measuring time-coordinates at the macro-level. This wilt be of  
significance later. 

It is, perhaps, appropriate here to give an example. 
Consider the Stern-Gerlach experiment (Ludwig, 1954). After passage 

through the magnetic field, the electron is in a mixture of  macroscopically 
distinct states. They are macroscopically distinct because they have widely 
divergent average values of  position (and small dispersions). Nevertheless, we 
do not  make a measurement to distinguish the various components of  the 
haixture. All we measure is the actual position (or coarse-grained position) of  
the electron. Since the components of  the mixture do overlap in configuration 
space (albeit with small probability), the measured position probabilities are 
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only taken to approximate (albeit very accurately) the probabilities attached to 
measuring the various components of  the mixture.? 

2. Theorems 

Definition 2'. Two clusters of  vectors C1 and C2 are approximately ortho- 
gonal to order 5 if and only if, for any ~b 1 in C1 and ~2 in C2, there exist 
vectors Ca and ~2 such that <~b], ~ )  = 0 and ~b a ~ ~1 to order g and 
~2 ~ ~ to order 8. 

Theorem 2'. The {C/} for any given.d are approximately orthogonal to 
order 5. 

Proof. Obvious from I '  and Definition 2'. 

We now introduce one more definition and a theorem, which become of 
importance shortly. 

Definition 3'. The set of  dusters {6'/} is linearly independent if and only if 
any set of  vectors, containing only members of  the {C/} and at most one 
member of  any one (Q}, is linearly independent. 

Theorem 3'. Any finite set of  dusters,  which are approximately orthogonal 
to order 8, are linearly independent, for 6 small enough, but 6 > 0. 

Proof Let {C/} be a finite set of  N clusters, approximately orthogonal to 
order 8. Let ~b i be an arbitrary vector in C/, for each L Then by I', there exists 
an orthonormal set of  vectors { ~ }  for which ~ ~ ~)i t o  order 8, for each i. 

By Theorem 1' 

(i) ~ 1(~i,, ~ ; )  12 --,< 8 for any i '  @ i 
i' 

and i' ¢ i 

(ii) - t<~i ,~>l  2 > I 1 - 8  

Now let {~i} be linearly dependent (this is the first premiss in a reductio 
proof); i.e. for some i, 

(iii) - ~ i  = ~ ('~'q;i' 
l 

i '¢i  
Taking scalar product of  both  sides of (iii) with ~;,  and the taking modulus 
squared, gives 

(iv) t ( @ i , ~ ; ) 1 2 = l  ~, Ci,(V;i,,Jd~}t 2 
l 

i ' # i  

Note also we that we agree with Bunge that the Stern-Gerlach experiment is not really" a 
description of a measurement-not, at least, untit the interaction between the target screen 
and the incident electron is spelled out (Bunge, 1967, p. 281). The answer to the perennial 
question 'which component is the electron really in' is contained in the answer to the 
SchrSdinger cat paradox-see later. 
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where, by (ii), the left-hand side of  (iv) i> 1 - 5, and, by H/51der's inequality, 
the right-hand side of (iv) 

< Y~ IG, I 2 7. I ( e ; ' , ~ ? ?  
i '  i '  

i'=/= i i' ~ i  

which, by (i), 

i '  
i' 4=i 

Hence 

(v) ( t - 6 ) ~ < f i  2 IG, I 2 
i '  

i ' ¢ i  

Hence, if we let K be the maximum value of  [C/, 1, then, from (v), we get tha 

(vi) K2~> ( 1 - 6 )  
( N -  ~)~ 

i l Now let {~ic~J be the complete orthonormal set for which 

ff~l ~ ffi to order 6, 

Hence, from Theorem 1' 

(vii) 

where 

(viii) 

Also, from (vii), 

(ix) 

C•'ot'  ~ i'ot' ~ i = i ~  i r 

~. Ic/,,~,12 < 8 
i ' ce  ~ 

(i'ee') :# ( i l )  

1c/11: = I<~il, ~ ) i :  < 1 

Hence, from (vii), 

( ~ r , ~ i ) t =  I E dF,~ci,,~l 

lef, Hcht+lei i l fc l ,  r 

(i"~x) 4= (i'1) and (i"o 0 ~ ( i l )  

which by H61der's inequality, (vii), (viii) and (ix), 

i<, 2 ~ iC/,, 1211/2 +~1/2 +~1/2 41 7 lw ,~ 
i"oe ir'c~ 

(i' %) =~ (i' 1 ) (f '~) ~= (i I ) 
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By (viii), we therefore get that 

(X) 1( @i', @i ) [ ~ 6 + 26 I/2 ~.~ 36 1/2 

Now, from (iii) for any i"  4: i, 

(xi) Cc' =<~c , ,  ~ >  - ~ C,.' < ~c', ~;> 
f 

i ' ~ i or i" 

In particular if we let IG"I = K, then we get, f rom (x) and (xi) (where K is 
maximum of  I G '  l) 

K ~< 361/2 + (N - 2)36 I/2K 

Hence 
K(1 - ( N -  2)361/2) ~ 361/2 

Hence, i f (1 -- ( N -  2)361/2) 4= 0, we have 

96 
K 2 ~< 

( 1  - -  ( N -  2)362/2) 2 

Hence 

17 

9fi 
(xii) K z if 36 ~/2(N - 2) < 1 

<~ ( i  - ( N -  2)361/2)2 

Now comparing (xii) and (vi), we see that  we have a contradiction if both 
3 6 1 / 2 ( N -  2 ) <  1 and 

(xiii) (1 - ( N -  2)361/2) 2 ( - ) 

But for 361/2(N - 2) ~ 1 we can put (1 - ( N -  2)381/2) ~ 1 and ( t  - 6) ~ I 
and hence (xiii) comes to 

t 
(xiv) 6 5 ~< 

9 (N-  t) 

which is obviously implied by 3 6 1 / 2 ( N -  2) ~ 1. 
Hence for 6 very small, we see that we have a contradiction, and hence, for 

8 very small, (iii) is false. Hence, for fi small enough, {~i} is linearly independ- 
ent, and since the {~i} was arbitrarily chosen-one  vector from each Ci-i t  
follows, from Definition 3' that  {C i} is linearly independent. Q.E.D. 

We now use the previous theorems. It is apparent that we would like to be 
able to come to conclusions like ' there is a probabili ty Pi that A~ has value a i 
in S at t' on the basis of  information about the state of  S at t. To do this, we 
make use of  the full degree of  generality in (ii), which only required the 
{ P [ ~ ] )  to be linearly independent (and not orthogonal). We also extend 
(iii) to: 

Axiom II'. I f S  at t is associated with {PIG, ~i¢/}, where 42i~ is in the cluster 
Ci of  A, for each i, fi, then .4 has the value ai in S at t if and only if S at t is in 
one of  the {~i~}i out of  the set {t~i~). 
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We can then see that if W(S, t) = ~ piP[~i], where ~i is in Ci for each i, and 
i f  the Ci are linearly independent (Definition 3'), then there is a probability Pi 
that .4l has value ai. t (Proof follows from (ii), II', and probability theory.) 

The problem then is how to guarantee the linear independence of the {Ci}, 
so that we can quite generally infer from 'W(S, t )= ~ piP[~i], where ~i is in 
Ci a cluster of~]' to 'there is probability Pi that A has value ai'. Now we know 
from Theorem 3', that linear independence of {Ci} is guaranteed by there being 
a finite number of {Ci}, and by their being approximately orthogonal to degree 
6, for 6 small. This suggests that we postulate the {Ci} for any m-variable A in 
S, to be approximately orthogonal to degree 6, where 6 is very small; and that 
we either assume observed systems to be restricted to states which are super- 
positions of vectors from a finite number of  the {Ci}, or that there are only a 
finite number of members of {Ci}. Of the latter two alternatives, we prefer the 
second because it is less arbitrary, although it does have the controversial con- 
sequences that macroscopic variables necessarily have finite (albeit arbitrarily 
large) ranges, and hence must be infinitely degenerate (whenever the system's 
Hilbert space is infinite dimensional). Formally, then we suggest, 

Axiom II1'. The number of clusters associated with any m-variable is finite. 

Axiom IV'. For any m-variable A, the degree 6 to which its vectors approxi- 
mate the vectors of the associated variable A, is so small that 361/2(N- 2) ~ 1, 
where N is the number of clusters of.d associated with A. 

Theorem 3'b. {Ci} is linearly independent. 

Proof Trivially from Ill', IV' and Theorem 3'. 

Comment. N may depend on A t, although we do not explicitly display this 
dependence. Note also that we could alter the condition that 36 t / 2 ( N -  2) ~ 1 
in IV', and even forgo IV' entirely, if some significantly weaker condition can 
be found to guarantee {Ci} linearly independent. 

We also note that in practice III' is usually obeyed any way. For example, in 
the Schr6dinger cat paradox (to be discussed later), the m-variable has two 
clusters associated with i t -one for the 'cat-dead states' and the other for the 
'cat-alive states'. 

Finally, we note that the approximate orthogonality of the {C/} is just the 
condition which Araki & Yanase (1960) found was dictated by independent 
considerations, based on the study of 'ideal measuring processes'. 

3. Evolution o f  m- Variables 

There is one crucial question which must be resolved, if we are to maintain 
the model for macroscopic variables which we have suggested in the preceding 
part. That question is why' there are no interference effects observed between 

~- The probabil i ty here may  be non-unique.  This is a problem which will be dealt with 
in another  paper,  where we show the non-uniqueness  is restricted to within a small r a n g e -  
see Part 3 o f  Krips (1974).  



MACROSCOPIC VARIABLES 19 

macroscopically distinct states. One answer would be that superpositions o f  
macroscopically dinstinct states do not occur. But this restriction seems just 
too ad hoc. Furthermore, we shall now show this restriction to be inconsistent 
with quantum dynamics (via a certain lemma). 

Let S at t be in the pure state ~i in the cluster G - w h e r e  Ci is the cluster of  
vectors corresponding to the value a i of some macro-variable A. It is a fact 
that even in isolated systems the values taken by some macro-var, iabtes do, on 
occasions, change. Therefore, for some S, A, and t', S will be isolated from t 
to t '  and will be in the pure state ffi' at t', where ffi' is in the cluster Ci', and 
i @ i'. We can assume that the state-vector o r S  is not  in any of  the {Ci}, other 
than Ci or Ci' during t, t '  with no toss of  generality;~ because, i fS  at t" were 
in Ci", where i" @ i or i' and t < t" < t', then we could change t '  to t" and 
consider the new interval [t, t"] instead. 

Now, since S is isolated between t, and t', it foIlows that for any tl, t2 in 
the interval t, t', we have that S at t I is in the pure state if(t1), and if(t2) = 
U(t2, rl)~(t~); and in particular ~i' = U(t" t)~ 1. (Uft2. tO is the Schr6dinger 
propagator from tl to tz; and the set of U(t2, tl), for constant t l ,  forms a 
one-parameter continuous group of  unitary transformations,~: so that, for any 

or ~ '  in H, if t~ ~ t2, then (4 ,  U(t;, t~)~') -+ (~ ,  U(r~, t l)~') .)  
We can now prove the following: 

Lemma, If  for any two members ~(t,), t~(t0 of  the continuous sequence of  
vectors ~(t), we have that if(t:) = U(t~,tl) if(t1); and if if(h) is in Ci'" and ~(t~) 
is in Ci" then i" = i "  if I tl - tz is sufficiently small. 

Proof. There is a set {~} ,  which is a complete orthonormal set of  vectors 
of  the variable A which corresponds to the m-variable A (to which the {Ci} 
belong). Let if(t1) be in Ci"' and ~(r:) be in Ci" where i"@ i'". By Theorem 1', 
if ~(q) = 2; C/1~ and ~(t,) = 12 C/2~ then 

(i) [C), 12 > 1 - 6 and [C~,, 12 < 6 

Now let 

~(r~) = U(t~, r~)~(t~) 

Taking scalar product of both sides with ~'i", and the modulus squared, gives 

(ii) [( •;", U(t : , t~)~)12 = [C fi' 12 

But, as tl ~ t2, 

1 ( ~ " ,  U(t : , t~)@(t , ) )12 -+ ]( ¢~,,, ~ ( t , ) )  ] 2 = [C],,I 2 

The state-vector of S may of course be in a linear-superposition of vectors from 
various {C i } during [t, t'], without being in one of the {Ci}. 

We shall not be discussing the axioms of quantum dynamics. An excellent attempt 
at doing just this, starting from very elementary principles, is to be found in Eckstein 
(1967, 1969). Details of one-parameter groups axe given in Riesz & Nagy (1965). 
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(since the group of  transtbrmations is continuous, and U(ri, tl) = I). Hence 
from (i), we see that, as tl ~ t2, the inequality (ii) is not  possible. Hence, the 
supposition i" ~= i", as tl -~ t2, is not possible. Q.E.D. 

Now introduce the function i(t"), which takes the value i in S at t" if and 
only i fS  at t has a state-vector in Ci. Ex hypothesi i(t") takes the value i or i' 
for t" in [t, t~]. If  and only i fS  at t" has a state-vector which is in none of  the 
(C~-}, then i(t") is undefined. We shall now show, using the preceding temma, 
that i(t") must be undefined at some t" in [t, t']. 

Proof2 Suppose that i(t") is defined for all t" in [t, t']. Then the preceding 
lemma entails that i(t") is a continuous function of  t" on the domain [t, t ']. 
Hence, from the fundamental property of  continuous functions, and since 
i(t) = i and i(t') = i', we see that i(t") must take any value between i and i' as 
t" takes various values in It, t ']. This is impossible however, since i(t"), ex 
hypothesi, only has values i or i', where i ~ i'. Therefore, i(t") must be 
undefined for at 1east one t" in [t, t ']. 

From the preceding proof it immediately follows that the state-vector of  S 
is not in one of  the {Ci}, at some t" in [t, t']. But the set {Ci} is complete in 
H (since it includes the complete set of  eigenvectors of  the variable A corre- 
sponding to the m-variable A); and therefore, at some t" in [t, t '],  ff(t") is a 
non-trivial linear combination of  vectors from various {Ci} and is not  in one of  
the {C/}.? 

This completes the proof that to restrict the occurrence of  superpositions of 
macroscopically distinct states to joint systems is inconsistent with quantum 
dynamics. It follows that some other way must be found to explain the failure 
to observe interference effects between macroscopically distinct states. 

The way which we shall suggest now is a slight variant of  the traditional 
"phase wash-out theories '-see Margenau ( t967) ,  Van Kampen (1962). 

The first point is the macro-variables change their values slowly; i.e., there is, 
by and large, stability of  their values over small time-intervals. This in turn 
suggests an approximate correlation between the various {Ci}, for an m-variable 
~/- of  the isolated system S, and the 'energy shells' (eigenspaces of  the 
Hamittonian H) of S. The correlation must not of  course be an exact one-- 
otherwise we contradict the fact mentioned earlier, that macro-variables do 
change their values in isolated systems. (We are, of  course, assuming conser- 
vation of  energy for isolated systems.) This approximate correlation may be 
expressed as follows. Let ffm~ be the eigenvector o f  H for energy value Ern~, 
where Em~ =Em for all in,/3. Then, if if; is a vector of  A to which vectors in C/ 
(a cluster of.~) are approximately orthogonal, and if 

¢,; = Y Y cg ¢m  
m 

t The second conjunct in the latter conclusion is not redundant, because a non-trivial 
linear combination of vectors from various {Ci} may be in one of the {Ci}-since the {Ci} 
are not closed linear manifolds, but are unions of hyperspheres (see Section 1 of this paper) 
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we have that 

E Ic i~[2<6  f o r E i > E m > E i + A E i  
m 

where 8 is small, and all the semi-closed intervals (El, & + AEi] are disjoint. 
Our second point is the one mentioned earlier that at the macro-level we do 

not, in fact, observe the probability of measuringA to have ai in S at t; but 
instead observe the time-average quantity 

t+T, 

I_T f P[A, ai; S, t'] dt' 

t -To  

where T1 + To = T > 0, and T is the error accepted in locating times at the 
macro-level. Furthermore, we shall assume that T AE ~> 1/8, where AE is the 
minimum energy difference between the energy shells correlated with the {Ci}. 
We use units of h = 1. 

It is tempting to try to justify the latter assumption by referring to the 
Heisenberg relation 'AEkt  >i 1'; but Allcock (1969), in a penetrating and 
thorough series of articles, warned against doing this lightly. According to 
Allcock, we need to examine the details of  the measuring apparatus used, 
before interpreting 'At '  in the above relation as the indeterminacy in the time 
variable. We therefore leave this assumption as unjustified; but one which will, 
it is to be hoped, be vindicated by a complete theory of macroscopic 
phenomena. 

Now suppose that 

W(S, t) = ~pyP[~y]  

We also suppose that S is isolated; and for simplicity we assume that, for each 
i, any vector in Ci is approximately orthogonal to the same ff~ (i.e. A is non- 
degenerate). Hence, for any y, 

(vii) ~y = ~ qY~ 

As above, for any i, if 

(viii) ~ = ~ ~ C~m13~rn13 
m 13 

then 

(ix) ~_,~ i ~2 ICm13~ <~ 
m 13 

for E i > E m >/E i + AEi 

Also, from (i) and (iv) (in Section 1) 

P[A, i; S, t] = ~ py !C yl 2 
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One way for there to be no observed interference effects between the 
various (Ci} of A, would be for there to be no interference effects between 
the various {~} of A (since A is measured via A); i.e. for the density 
operator of S at t to be 

(x) W = E ~ Py I Cy 12P[~I 

We shall now show that time-averaging W(S, t) does, in fact, smooth out the 
interference terms; so that, after a macroscopic time-averaging, W(S, t) ~ W. 
This is sufficient to show that interference effects are not significant at the 
macro-level, because of the second point we raised above; viz. that only time- 
averaged quantities are significant at the macro-level. 

From the rules of quantum dynamics, the time-averaged density operator 
for S at t is 

t+T~ 
1 

Iq(S, t) = -~- f W(S, t') dt'  
t - T O 

t+T 1 
i w  

i [exp-itl(t'- t)]W(S, t)[expiH(t'- t)] 
T J 

t -,- T O 

where H is the time-dependent Hamiltonian for the isolated system S. Hence, 
t+Ta 

W(S, t) ~ [exp - i H ( t ' -  t)] 2 Py ~ y ' 

t - -  o y u 

x [exp i H ( t ' -  t)] dt' 

t+T~ 

- 1 . (  [ e x p - i H ( t ' -  t) ~ p y  ~ ~ ~ ~)YCmfli t~rnfl ) 
T y " m~ m'F 

t - T O 

(~m'~' [ Cm'p'C/Y' [exp i H ( t ' -  t)] dt' 

1 t°YfiY,[ "i _i "~i' , t+T~ 
=-~ ~ ~ ~ ~. Py~i  ~i'~rn~'rn'~ f dr' 

y ii' m13 m'[3' t--To 

x [exp - i (E m - E m ' ) ( t ' -  t)] t q'm~)(~m'~'l 

y ii' rn~ m ' f  p y c i c i  Cm~Cm~ t~m~><~m'~'I 
Em ~E m 

[sin ½ (Em - E m ' ) r  ] 
x [exp - ½i(Em - Em')(TI  - To)] ½(Era - e m ' ) r  

provided [sin ½ (Em - Em')T]/½ (Era - Em')T is understood as 1 if E m =  Era'. 
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We now evaluate Tr R ' R ,  where R is got from the above expression of  
W(S, t) by putting i 4= i'. This will be a measure of  the degree to which W(S, t) 
approximates W, after time-averaging;~ and it is this quantity which we require 
to be small. 

Now 

Tr R*R = ~ 
rn~ m'3' 

rn3 rn'3' 

(~rn3R, ~Jrn'~' )( ~Jrn'3 ', Rffm3) 

y ~3? f - i '  E ~, Py Ci Ci' Cm3Cm'y [exp - ½i(Em - Em')(T1 - To)I 
y n 

iv~i' 

[sin l ( E  m - g r n ' ) Z ]  2 

× Vi2---L or 
Informally, one can see that this expression can be made small, because, 

from (v), the only large modulus terms will be those for which 

E i > E m ) E i + A E  i and ]Z i' > E m , ~> E i' + AE i 

But, for any term tbr which the latter inequalities hold, IEm - Era' ] > AE, 
since i 4= i', and therefore [½(Era - Em')TI  > 1/6 (since we decided above 
that T A E  > 1/6); and hence, for small 6, the term has small modulus. Assuming 
the appropriate convergence conditions, the required result then follows. 

Another problem which the m-variable model for macro-variables has to face 
is the following. It is a fact that if a macro-variable starts out with a certain 
value in S at t, then its value does not spread (although it may change) at later 
times in S. To capture this fact in the m-variable model, the Hamittonians for 
macro-systems will have to be so constructed that i fS  at t has a small spread in 
the values of  A (necessary for it to be in one of  the Ci), then that spread will 
remain small. Van Kampen ( t962)  discusses this requirement. This restriction 
does not, however, guarantee that S will always be in one of  the {Ci}. Indeed 
it is clear from the first considerations in Section 3, that S must be in none of  
the {Ci}, at some time, if it is to change to some other {Ci), This discrepancy 
between m-variables and macroscopic variables can, however, be explained by 
realising that, at the macro-level, the accepted errors are so large that they 
mask the transitions between the discrete (Ci}. (This is also the reason why 
classical theory gives satisfactory answers at the macro-level, despite containing 
the false assumption that the macro-variables have continuous ranges of values.) 

4. Schr6dinger Paradox 

We shall here present a generatised version of Schr6dinger's paradox 
(Schr6dinger, 1935). We have already discussed the paradox in Krips (1969); 

Obviously Tr (W(S, t) - W)A -- Tr RA (where "~ is the time-average of W-see (x)); 
and hence W(S,t) is effectively W-at least as far as the expectation values of any variables 
go-ff ] Tr RA[ is small. But [Tr RA[ ~< Tr R*R Tr A'A; and hence Tr RA is small if 
Tr R*R is-at least if A is Hilbert-Schmidt (and hence if A is a projection operator). 
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but what we have to say here is somewhat different in the light of  the preceding 
theory of m-variables. 

Suppose there is a conservative measurement interaction from time t to t', 
between S, which is in the pure state ~ CiqJi at t, and the measuring apparatus 
M which is in the pure state 0 at t. The measured variable A is non-degenerate, 
with vectors {ffi}. Then at I ' ,S  + M i s  in the pure state 2 CiO i x ~Yi, where {~i} 
is a set of  macroscopically distinct s tates-M at t '  in Oi (out of  {qSi}) is to be 
interpreted as M registering the value ai for A. 

Note that the latter condition, from our theory o f  m-variables, implies that 
0i iS in a cluster C i of some d of M, for e a c h / - a n d  hence the {Oi} need not  be 
orthogonal (indeed, according to Araki & Yanase (1960), they cannot be). 

The Schr6dinger paradox points out that S + M at t '  is in a pure superpos- 
#ion of  vectors corresponding to macroscopically distinct s tates-which is at 
variance with the 'observed fact' that, after measurement, M does register one 
of  the values for A. 

Where this paradox breaks down is in making the implicit assumption that 
if S + M at t '  is in a pure superposition of  vectors corresponding to macroscopi- 
cally distinct states, then M is not in one of  a set of possible macroscopically 
distinct states. In fact this assumption is wrong. From the density operator for 
S + M at t ', we can deduce (via (iv) in section 1) the density operator for M 
at t' to be 2 l C/[z P[0i]. Then, from the theorems in Section 2 o f  this paper, 
we get that, in M at t ', A does in fact have one o f  the values ~-i- (Ahas  ~-i with 
probability I C/[2.) We note that in Schr6dinger's example, the variable ' i '  has 
a finite range-in fact it is two-valued (C 1 corresponds to a cat being dead, 
and C2 to the cat being alive). This fits in with III ' .  
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